Grammar Debugging

Michael Maxwell

University of Maryland, College Park MD 20742 USA mmaxwell@umd.edu

September 2015

"If debugging is the process of removing software bugs, then programming must be the process of putting them in." – Edsger Dijkstra

Question: How do you know *whether* your grammatical description is correct?

Question: How do you know *whether* your grammatical description is correct?

Answer: By testing it! (see my "A System for Archivable Grammar Documentation", SFCM 2013)

Question: How do you figure out *why* your grammatical description is *in*correct?

Question: How do you figure out *why* your grammatical description is *in*correct?

Answer: By debugging it!

Previous work

We have developed an XML-based representation for morphology and phonology. Current coverage:

- Affixes (prefixes, suffixes...affixes-as-processes, including reduplication)
- Inflectional affix templates (encode order of prefixes/ suffixes; processes can override)
- Morphosyntactic features (including nested features; extended exponence)
- Inflection classes (= conjugation classes and declension classes)
- Phonemes/ graphemes, boundary markers
- Classes of phonemes/ graphemes
- Regular expressions over phonemes, classes...
- Phonological rules (including epenthesis, deletion, metathesis)
- Rule exception features (positive and negative)
- Suppletive wordforms ("irregular forms")
- Dialectal and spelling variation, alternative scripts

- We write the formal grammar in XML; a converter program (written in Python) reads the XML and creates the code for the target parsing engine (currently Stuttgart FST).
- We "Compile" that SFST code, together with lexical entries (usually derived from electronic dictionaries), and the output is a parser/generator.
- XML grammar schema is designed to abstract away from a particular parsing engine's programming language.
- XML grammars can therefore outlive the parsing engine.
- This has been used to build morphological parsers for a variety of languages (Bangla, Pashto, Somali, Swahili, Persian...)

ヘロト 人間 ト 人 ヨト 人 ヨト

What's still missing or in progress:

- Rule strata, compounding, derivational affixes, "stem names"
- Debugging (this talk!)
- Visual editor displaying objects in a linguistic format (no XML tags!)
- Typesetting in linguistic style
- Generic dictionary import methods

Some motivations for an XML-based declarative linguistic description language

- Ease of use by linguists
- Software independence
- Longevity
- Linguistic basis...
- ...But theory agnosticism ("Basic Linguistic Theory", R.M.W. Dixon)
- Allow alternative analyses
- Reproducible research

"Any fool can write code that a computer can understand. Good programmers write code that humans can understand." – Martin Fowler

(日)

- Why doesn't my grammar + parsing engine parse word X?
- Desired output: a trace of the derivation, showing where the parse goes wrong.
- Naively:

tienes	surface form
tenes	diphthongization (other phonological rules)
	(other phonological rules)
[ten] _v -es	suffixation
[ten] _v -3sgPresInd	lexical lookup

... or if the diphthongization rule failed to (un)apply, perhaps:

tienes	surface form
tienes	*diphthongization
	(other phonological rules)
[tien] _v -es	suffixation
[*tien]v-3sgPresInd	lexical lookup

("*tien" represents non-existent lexeme)

In reality, the search space is branching, and often large:

tienes					surface form
tienes			tenes		diphthongization
					(other rules)
tienes	[tien] _v -es	[tien] _N -es	[ten] _v -es	[ten] _N -es	suffixation
*tienes	[*tien] _v -3sg	[*tien] _N -Pl	[ten] _v -3sg	[*ten] _N -Pl	lexical lookup

-which complicates debugging, since the user sees uninteresting paths in the search space.

(N.B. For reasons of space, affix glosses simplified, adjectival parses omitted)

ヘロト ヘ部ト ヘヨト ヘヨト

Problem 2

There is no search in the sense of de-constructing a derivation:

- Modern parsing engines (finite state transducers, or FSTs) "compile" a parser by attaching affixes to words in the lexicon(s), applying phonological rules, and finally removing any auxiliary characters (like boundary markers).
- The result is a network consisting of pairs of matched paths, with one path in each pair representing the lexical form, the other the surface form.
- Lookup consists of finding a path among the surface form paths that matches the word to be parsed, and returning the corresponding lexical path.
- As a result, the compiled network does not contain any intermediate stages in the derivations.

Exception: The Hermit Crab parser (a non-finite state parsing engine) in principle allows tracing of intermediate stages of non-parsing words.

- Problem 3: As a further result of the way FSTs work, it's impossible to display what even the trivial (two stage) derivation of a word is, because *there is no path* corresponding to a non-parsing word.
- Problem 4: FSTs can be very slow to compile: up to 20 or 30 minutes, depending on size of lexicons and other factors.
- Problem 5: Using XML interposes an extra level of abstraction between what the linguist *writes* and what the computer *does*.

(日)

How then to debug?

Problems:

Problem 1: In parsing, there may be more than one search path to explore.

- Problem 2: Compilation throws away intermediate stages.
- Problem 3: If the parser doesn't parse a surface word, the surface form doesn't even exist in the parser, so its derivation could't be followed (even if there were intermediate stages).

```
Problem 4: Life is short.
```

```
Problem 5: XML ≠ SFST (or XFST or...)
```

Solution:

Problem 3: Start with the underlying form and see what you get.
Problem 2: Compile the surface form from that underlying form step-by-step, and display the output of each step.
Problem 1: Since we start with the underlying form, there is no search (branches occur only with free variants or optional phonological rules).
Problem 4: Compile only the target lexeme.
Problem 5: This turns out to be an advantage!

What can cause failure to parse a word?

- Failure to extract a lexeme from a dictionary.
- Lexeme is spelled incorrectly (typo, spelling variation, missing diacritics, similar letters that differ in Unicode, upper-lower case issues...).
- Surface form is spelled incorrectly (same issues).
- Incompatibility of affix(es) with lexeme (wrong part of speech?).
- Incompatibility of affixes with each other (incompatible features in multiple exponence).
- Affixes in wrong order.
- Expected allomorph cannot appear in phonological environment.
- A phonological rule unexpectedly fails to apply (rule written wrong, rule ordering problem).
- A phonological rule applies when unexpected (same reasons).

Remainder of talk shows how we've achieved (most of) this.

(日)

How the debugger works

- Assumptions:
 - There is a word which won't parse correctly.
 - The linguist (thinks he) knows how it should parse.
- Two ways to run the debugger:
 - Command line
 - GUI (talk will concentrate on this)
- In either case, linguist provides a description of how the word should parse:
 - a lexeme
 - its part of speech
 - an inflectional template
 - ▶ a list of (inflectional) affixes, or a set of morphosyntactic features
- The debugger either says "You can't do that because...", or it generates a derivation. (Presumably the derivation results in a surface form different from the expected one.)

Step 1: Lexeme selection

💥 Somali Debugger	
Citation form:	samee
Part of speech:	Verb 🛥
Choose Features	Choose Affixes

Failure at this point indicates one of two possible errors:

- Failure to extract a lexeme from a dictionary.
- User spelled lexeme incorrectly.

Since FST network will contain only this lexeme, compilation is fast.

(日)

Step 2a: Choose affixes

🎽 Somali Debugger									
samee: Verb									
Compatible Templat	tes								
VNegFuture			VSuffixInfi	nitive V	'SuffixCompo	unds	VSuffi	xAGR	VSuffixNegPresent
			-INF	-	-FUTURE	-	-2		-
Abbreviated Derivation	Debug!	Quit	1						-NEG.PRES.1.SG
									-NEG.PRES.2.SG
									-NEG.PRES.3.SG
									-NEG.PRES.1.PL
									-NEG.PRES.2.PL
									-NEG.PRES.3.PL

Failure at this point indicates one of three possible errors:

- Incompatibility of affix(es) with lexeme (indicated by absence of desired affix in list of possible affixes)
- Incompatibility of affixes with each other (incompatible features, indicated by error message–see next slide)
- Affixes in wrong order (indicated visually by order of affix slots in templates).

Michael Maxwell (University of Maryland)

Step 2a: Incompatible affixes

Incompatibility of affixes with each other due to incompatible features, indicated by error message:

💥 Somali Debugger							
samee: Verb							
Compatible Templat	es						
VNegFuture			VSuffixInfi	nitive \	/SuffixComp	ounds VSuffixAGF	t VSuffixNegPresent
			-INF	-	-FUTURE		-NEG.PRES.2.SG -
Abbreviated Derivation	Debug!	Quit	1		💥 Warr	ning	
					Ξ	The affixes -: -NEG.PRES.2 the feature [.SG disagree in 'Person'].

(日)

Step 2b: Choose morphosyntactic features

δomali Debugger							
		same	ee: Verb				
		Manahaanaa	and a Frankisson				
			actic Features				
Mood:	O None selected	imperative	C conditional	O optative	O potential	 infinitive 	O declarative
Person:	O None selected	○ first	second	C third			
Number:	C None selected	🖲 singular	O plural				
Reduce:	None selected	No value	reduced				
Valence:	• None selected	No value	③ autobenefactive				
Tense:	O None selected	🔿 past	present				
Aspect:	None selected	No value	progressive				
Gender:	None selected	@ masculine	④ feminine	Inknown			
Negation:	O None selected	No value	negative				
Exclusivity:	None selected	inclusive	exclusive				
Case:	• None selected	absolutive	subject				
Compatible Templates							
Compatible Templates							
VNegFuture							
Abbreviated Derivation Debug!	Quit						

Failure at this point indicates one of three possible errors:

- Incompatibility of morphosyntactic feature(s) with lexeme/ POS (indicated by absence of desired feature in list of possible features)
- Incompatibility of features with each other (indicated by error message).

SFST "compiler" is called automatically to generate each intermediate step (= output of each phonological rule) plus final output, and display this in a browser.

Failure to generate target surface form indicates one of two possible errors:

- A phonological rule unexpectedly fails to apply (rule written wrong, rule ordering problem).
- A phonological rule applies when unexpected (same reasons).

Because each step of the derivation is visible, the linguist can see where the derivation went wrong.

Step 3: Follow derivation

👍 🛞 file:///home/mmaxwell/Data/Son	nali/DebugRe 🗙 🖓 國	 Google 					Ξ.		
0-							-	·	
Derivation of stem="samee		<-INF><-FUTURE:	><-2><-NEG.PR						
Underlying Forms	samee+n+			samee+i+					
	doon+t+o			doon+t+o					
StemShiftLANtoLM									
NGemination	n N								
LongAAtoAY									
LongEEtoE			samey+n+	н					
ing the state of the			doon+t+o	1985					
GlideInsertion	<u>H</u>	sameey+n+	н	н			y+i		
		doon+t+o			do	on+	t+c	1	
TbecomesS				н					
BGemination		н	н	н					
WtoOB		н							
LNtoLL	н	н	н	н					
RNtoRR			н						
MidVowelCollapseGeneral									
MidVowelCollapseRFinal	н	н	н	н					
StemShiftGtoK			. 0	н			.0		
LTtoSH			"	н			"		
DhdeGemination	н	н	н	н			н		
AfterWVoicing				н					
DGemination	н	н	н	н					
TdeGemination			п	н					
IYtoSH				н					
DictionaryNtoUnderlyingM	н	н	н	н					
Gemination	н	н	н	н			н		
DeGemination							"		
DeGemination2		н		н			н		
UnderlyingMtoN		н	н	н					
UnderlyingMtoN2		н	н	н					
NVowelDrop		.0.2		3 1 12					
Surface Forms	sameendoonto	sameeyndoonto	sameyndoonto	sameeidoonto	sa	mee	yide	oont	0
				1 L F 1 L F					

Michael Maxwell (University of Maryland)

- Parser converter (XML-to-FST) and debugger are both implemented in Python.
- GUI is implemented in Python-Tkinter.
- Currently in Linux; could probably be ported to Windows.
- Remember problem 5? Using XML interposes an extra level of abstraction between what the linguist *writes* and what the computer *does*.

- Parser converter (XML-to-FST) and debugger are both implemented in Python.
- GUI is implemented in Python-Tkinter.
- Currently in Linux; could probably be ported to Windows.
- Remember problem 5?

Using XML interposes an extra level of abstraction between what the linguist *writes* and what the computer *does*.

SFST is not a general-purpose programming language; we could not have written the debugger in SFST alone.

The Python converter from XML to SFST gives us the programatic control over the compilation!

Planned enhancements to debugger

- Explanation of allomorph choice.
- Diagnosis of an incorrectly spelled lexeme.
- Diagnosis of an incorrectly spelled surface form.
- Better ability to determine why a rule doesn't apply (by iterative simplification of rule's environment or input).
- Better explanation of why rule applies when it shouldn't (by alignment of rule input and environment with input form).
- Port GUI to browser (HTML + Javascript)
- Open source
- Probably not possible: Try all possible phonological rule orderings (N! in number of rules)

- Olivia Waring (now at Microsoft)
- Nikki Adams (Somali and Swahili parsers)
- Erin Smith-Crabb (Somali parser)