
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.

Grammar Debugging

Michael Maxwell

University of Maryland, College Park MD 20742 USA
mmaxwell@umd.edu

September 2015

Michael Maxwell (University of Maryland) Grammar Debugging September 2015 1 / 25



.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.

“If debugging is the process of removing software bugs, then programming
must be the process of putting them in.” – Edsger Dijkstra

Michael Maxwell (University of Maryland) Grammar Debugging September 2015 2 / 25



.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.

Why?

Question: How do you know whether your grammatical description is
correct?

Answer: By testing it!
(see my “A System for Archivable Grammar Documentation”,
SFCM 2013)

Michael Maxwell (University of Maryland) Grammar Debugging September 2015 3 / 25



.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.

Why?

Question: How do you know whether your grammatical description is
correct?

Answer: By testing it!
(see my “A System for Archivable Grammar Documentation”,
SFCM 2013)

Michael Maxwell (University of Maryland) Grammar Debugging September 2015 3 / 25



.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.

Why?

Question: How do you figure out why your grammatical description is
incorrect?

Answer: By debugging it!

Michael Maxwell (University of Maryland) Grammar Debugging September 2015 4 / 25



.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.

Why?

Question: How do you figure out why your grammatical description is
incorrect?

Answer: By debugging it!

Michael Maxwell (University of Maryland) Grammar Debugging September 2015 4 / 25



.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.

Previous work
We have developed an XML-based representation for morphology and
phonology. Current coverage:

Affixes (prefixes, suffixes…affixes-as-processes, including reduplication)
Inflectional affix templates (encode order of prefixes/ suffixes; processes
can override)
Morphosyntactic features (including nested features; extended
exponence)
Inflection classes (= conjugation classes and declension classes)
Phonemes/ graphemes, boundary markers
Classes of phonemes/ graphemes
Regular expressions over phonemes, classes…
Phonological rules (including epenthesis, deletion, metathesis)
Rule exception features (positive and negative)
Suppletive wordforms (“irregular forms”)
Dialectal and spelling variation, alternative scripts

Michael Maxwell (University of Maryland) Grammar Debugging September 2015 5 / 25



.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.

Previous work (continued)

We write the formal grammar in XML; a converter program (written in
Python) reads the XML and creates the code for the target parsing engine
(currently Stuttgart FST).
We “Compile” that SFST code, together with lexical entries (usually
derived from electronic dictionaries), and the output is a parser/
generator.
XML grammar schema is designed to abstract away from a particular
parsing engine’s programming language.
XML grammars can therefore outlive the parsing engine.
This has been used to build morphological parsers for a variety of
languages (Bangla, Pashto, Somali, Swahili, Persian...)

Michael Maxwell (University of Maryland) Grammar Debugging September 2015 6 / 25



.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.

Previous work (continued)

What’s still missing or in progress:

Rule strata, compounding, derivational affixes, “stem names”
Debugging (this talk!)
Visual editor displaying objects in a linguistic format (no XML tags!)
Typesetting in linguistic style
Generic dictionary import methods

Michael Maxwell (University of Maryland) Grammar Debugging September 2015 7 / 25



.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.

Some motivations for an XML-based declarative
linguistic description language

Ease of use by linguists
Software independence
Longevity
Linguistic basis…
…But theory agnosticism (“Basic Linguistic Theory”, R.M.W. Dixon)
Allow alternative analyses
Reproducible research

“Any fool can write code that a computer can understand. Good
programmers write code that humans can understand.” – Martin Fowler

Michael Maxwell (University of Maryland) Grammar Debugging September 2015 8 / 25



.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.

A debugger

Why doesn’t my grammar + parsing engine parse word X?
Desired output: a trace of the derivation, showing where the parse goes
wrong.
Naively:

tienes surface form
tenes diphthongization
... (other phonological rules)

[ten]V-es suffixation
[ten]V-3sgPresInd lexical lookup

Michael Maxwell (University of Maryland) Grammar Debugging September 2015 9 / 25



.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.

Naive view of debugger

...or if the diphthongization rule failed to (un)apply, perhaps:
tienes surface form
tienes *diphthongization
... (other phonological rules)

[tien]V-es suffixation
[*tien]V-3sgPresInd lexical lookup
(“*tien” represents non-existent lexeme)

Michael Maxwell (University of Maryland) Grammar Debugging September 2015 10 / 25



.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.

Problem 1

In reality, the search space is branching, and often large:
tienes surface form
tienes tenes diphthongization
... ... (other rules)

tienes [tien]V-es [tien]N-es [ten]V-es [ten]N-es suffixation
*tienes [*tien]V-3sg [*tien]N-Pl [ten]V-3sg [*ten]N-Pl lexical lookup
–which complicates debugging, since the user sees uninteresting paths in the search
space.
(N.B. For reasons of space, affix glosses simplified, adjectival parses omitted)

Michael Maxwell (University of Maryland) Grammar Debugging September 2015 11 / 25



.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.

Problem 2
There is no search in the sense of de-constructing a derivation:

Modern parsing engines (finite state transducers, or FSTs) “compile” a
parser by attaching affixes to words in the lexicon(s), applying
phonological rules, and finally removing any auxiliary characters (like
boundary markers).
The result is a network consisting of pairs of matched paths, with one
path in each pair representing the lexical form, the other the surface
form.
Lookup consists of finding a path among the surface form paths that
matches the word to be parsed, and returning the corresponding lexical
path.
As a result, the compiled network does not contain any intermediate
stages in the derivations.

Exception: The Hermit Crab parser (a non-finite state parsing engine) in
principle allows tracing of intermediate stages of non-parsing words.
Michael Maxwell (University of Maryland) Grammar Debugging September 2015 12 / 25



.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.

...and More Problems!

Problem 3: As a further result of the way FSTs work, it’s impossible to
display what even the trivial (two stage) derivation of a word
is, because there is no path corresponding to a non-parsing word.

Problem 4: FSTs can be very slow to compile: up to 20 or 30 minutes,
depending on size of lexicons and other factors.

Problem 5: Using XML interposes an extra level of abstraction between
what the linguist writes and what the computer does.

Michael Maxwell (University of Maryland) Grammar Debugging September 2015 13 / 25



.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.

How then to debug?
Problems:
Problem 1: In parsing, there may be more than one search path to explore.
Problem 2: Compilation throws away intermediate stages.
Problem 3: If the parser doesn’t parse a surface word, the surface form

doesn’t even exist in the parser, so its derivation could’t be
followed (even if there were intermediate stages).

Problem 4: Life is short.
Problem 5: XML ≠ SFST (or XFST or...)
Solution:
Problem 3: Start with the underlying form and see what you get.
Problem 2: Compile the surface form from that underlying form

step-by-step, and display the output of each step.
Problem 1: Since we start with the underlying form, there is no search

(branches occur only with free variants or optional
phonological rules).

Problem 4: Compile only the target lexeme.
Problem 5: This turns out to be an advantage!

Michael Maxwell (University of Maryland) Grammar Debugging September 2015 14 / 25



.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.

What can cause failure to parse a word?

Failure to extract a lexeme from a dictionary.
Lexeme is spelled incorrectly (typo, spelling variation, missing diacritics,
similar letters that differ in Unicode, upper-lower case issues...).
Surface form is spelled incorrectly (same issues).
Incompatibility of affix(es) with lexeme (wrong part of speech?).
Incompatibility of affixes with each other (incompatible features in
multiple exponence).
Affixes in wrong order.
Expected allomorph cannot appear in phonological environment.
A phonological rule unexpectedly fails to apply (rule written wrong, rule
ordering problem).
A phonological rule applies when unexpected (same reasons).

Remainder of talk shows how we’ve achieved (most of) this.

Michael Maxwell (University of Maryland) Grammar Debugging September 2015 15 / 25



.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.

How the debugger works

Assumptions:
▶ There is a word which won’t parse correctly.
▶ The linguist (thinks he) knows how it should parse.
Two ways to run the debugger:

▶ Command line
▶ GUI (talk will concentrate on this)
In either case, linguist provides a description of how the word should
parse:

▶ a lexeme
▶ its part of speech
▶ an inflectional template
▶ a list of (inflectional) affixes, or a set of morphosyntactic features
The debugger either says “You can’t do that because...”, or it generates a
derivation. (Presumably the derivation results in a surface form different
from the expected one.)

Michael Maxwell (University of Maryland) Grammar Debugging September 2015 16 / 25



.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.

Step 1: Lexeme selection

Failure at this point indicates one of two possible errors:

Failure to extract a lexeme from a dictionary.
User spelled lexeme incorrectly.

Since FST network will contain only this lexeme, compilation is fast.

Michael Maxwell (University of Maryland) Grammar Debugging September 2015 17 / 25



.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.

Step 2a: Choose affixes

Failure at this point indicates one of three possible errors:
Incompatibility of affix(es) with lexeme (indicated by absence of desired
affix in list of possible affixes)
Incompatibility of affixes with each other (incompatible features,
indicated by error message–see next slide)
Affixes in wrong order (indicated visually by order of affix slots in
templates).

Michael Maxwell (University of Maryland) Grammar Debugging September 2015 18 / 25



.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.

Step 2a: Incompatible affixes

Incompatibility of affixes with each other due to incompatible features,
indicated by error message:

Michael Maxwell (University of Maryland) Grammar Debugging September 2015 19 / 25



.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.

Step 2b: Choose morphosyntactic features

Failure at this point indicates one of three possible errors:

Incompatibility of morphosyntactic feature(s) with lexeme/ POS
(indicated by absence of desired feature in list of possible features)
Incompatibility of features with each other (indicated by error message).

Michael Maxwell (University of Maryland) Grammar Debugging September 2015 20 / 25



.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.

Step 3: Follow derivation

SFST “compiler” is called automatically to generate each intermediate step
(= output of each phonological rule) plus final output, and display this in a
browser.
Failure to generate target surface form indicates one of two possible errors:

A phonological rule unexpectedly fails to apply (rule written wrong, rule
ordering problem).
A phonological rule applies when unexpected (same reasons).

Because each step of the derivation is visible, the linguist can see where the
derivation went wrong.

Michael Maxwell (University of Maryland) Grammar Debugging September 2015 21 / 25



.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.

Step 3: Follow derivation

Michael Maxwell (University of Maryland) Grammar Debugging September 2015 22 / 25



.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.

Implementation

Parser converter (XML-to-FST) and debugger are both implemented in
Python.
GUI is implemented in Python-Tkinter.
Currently in Linux; could probably be ported to Windows.
Remember problem 5?
Using XML interposes an extra level of abstraction between what the
linguist writes and what the computer does.

SFST is not a general-purpose programming language; we could not have
written the debugger in SFST alone.
The Python converter from XML to SFST gives us the programatic control
over the compilation!

Michael Maxwell (University of Maryland) Grammar Debugging September 2015 23 / 25



.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.

Implementation

Parser converter (XML-to-FST) and debugger are both implemented in
Python.
GUI is implemented in Python-Tkinter.
Currently in Linux; could probably be ported to Windows.
Remember problem 5?
Using XML interposes an extra level of abstraction between what the
linguist writes and what the computer does.
SFST is not a general-purpose programming language; we could not have
written the debugger in SFST alone.
The Python converter from XML to SFST gives us the programatic control
over the compilation!

Michael Maxwell (University of Maryland) Grammar Debugging September 2015 23 / 25



.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.

Planned enhancements to debugger

Explanation of allomorph choice.
Diagnosis of an incorrectly spelled lexeme.
Diagnosis of an incorrectly spelled surface form.
Better ability to determine why a rule doesn’t apply (by iterative
simplification of rule’s environment or input).
Better explanation of why rule applies when it shouldn’t (by alignment
of rule input and environment with input form).
Port GUI to browser (HTML + Javascript)
Open source

Probably not possible: Try all possible phonological rule orderings (N! in
number of rules)

Michael Maxwell (University of Maryland) Grammar Debugging September 2015 24 / 25



.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.

With thanks to

Olivia Waring (now at Microsoft)
Nikki Adams (Somali and Swahili parsers)
Erin Smith-Crabb (Somali parser)

Michael Maxwell (University of Maryland) Grammar Debugging September 2015 25 / 25


