

Dsolve – Morphological Segmentation for German using Conditional Random Fields

Kay-Michael Würzner, Bryan Jurish {wuerzner,jurish}@bbaw.de

> SFCM Universität Stuttgart 17th September 2015

Outline

- Morphological analysis
- Existing approaches
- Morphological segmentation as sequence labeling (~> Dsolve approach)
- Experiments
- Discussion & Outlook

Morphological analysis

Goal

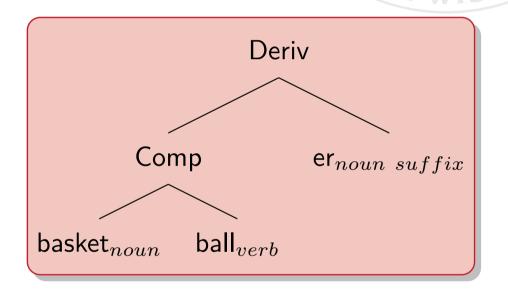
- identification & classification of
 - operations
 - operands
 - ... forming complex words

Operations

- compounding
- derivation
- inflection

Operands

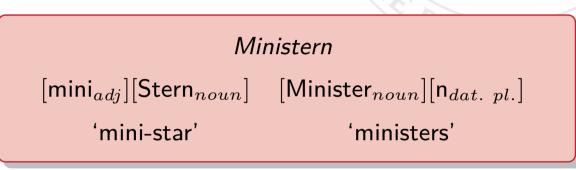
- morphemes (~→ *deep* analysis), or
- morphs (~> surface analysis)



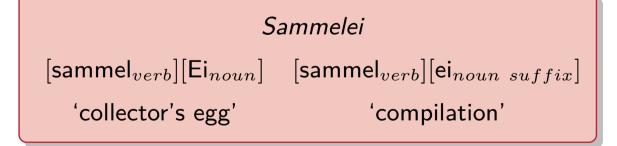
Morphological analysis: ambiguity

...w.r.t. *Identification*

 \blacksquare > 1 segmentation possible



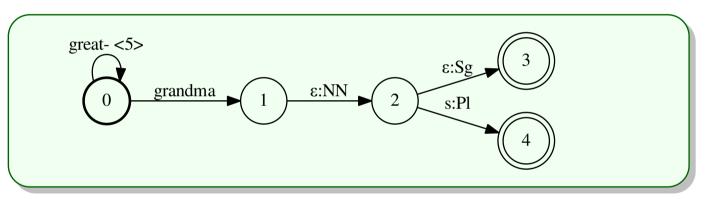
w.r.t. *Classification* > 1 category available



Existing approaches: finite-state methods

Finite lexicon & regular rules using (weighted) finite-state transducers

(cf. Karttunen & Beesley, 2003)



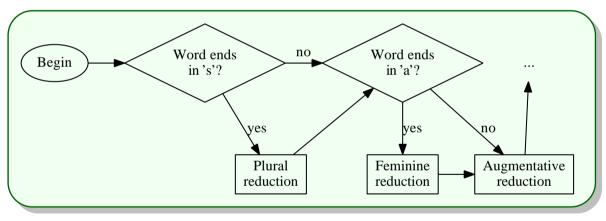
- Tropical semiring weights as measure of complexity
 - word formation processes associated with non-negative costs
 - prefer minimal-cost (least complex) analyses
- German: e.g. SMOR, TAGH (Schmid et al. 2004; Geyken & Hanneforth 2005)

Existing approaches: affix removal

- Identify & remove bound morphemes (prefixes, suffixes)
 - assume remaining material is the stem
- Usually implemented as series of cascaded rewrite heuristics

(Moreira & Huyck 2001)

(Porter 1980)



- No (exhaustive) lexicon necessary
- Syllable (CV) structure supports affix removal
- Works best for non-compounding languages;
 - has also been applied to German

(Reichel & Weinhammer 2004)

berlin-brandenburgische **AKADEMIE DER WISSENSCHAFTEN**

Existing approaches: morphology induction

Basic Idea

- bootstrap segmentation model from un-annontated raw text
- traceable back to Harris' notion of "Successor Frequency"

 $SF(w, i) = outDegree(ptaNode(w_1 \cdots w_i))$

SF peaks indicate morpheme boundaries

Heuristic Approaches

(e.g. Goldsmith 2001)

(e.g. Creutz & Lagus 2002, 2005)

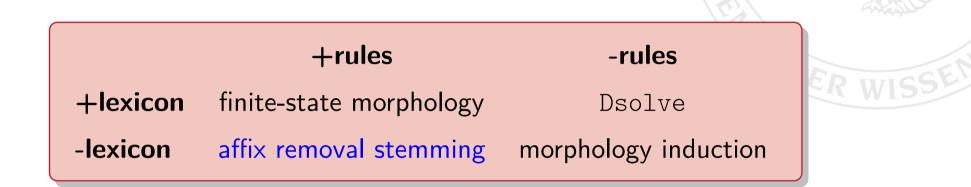
- minimum stem length, maximum affix length, minimum # stems / suffix, ...
- tend to under-segment words (poor recall)

Stochastic Approaches

- incremental greedy MDL segmentation ~> hierarchical model
- tend to over-segment words (poor precision)

		123	Fritan L
	+rules	-rules	
+lexicon	finite-state morphology	Dsolve	ER WISS
-lexicon	affix removal stemming	morphology induction	

- Lexicon- & grammar-creation ~> very labor-intensive
- Hard to debug, hard to maintain
- Efficient implementations available
- Very good analysis quality



- Grammar creation requires much less manual effort than FSM
- Hard to debug, tricky to implement efficiently
- Ambiguity handling ~> difficult
- Mediocre analysis quality

- Least labor-intensive (given an induction algorithm)
- No direct influence on resulting grammar (only via training-corpus selection)
- Inherent ranking of multiple available analyses
- Insufficient analysis quality (for production applications)

Segmentation \sim Labeling: binary classification

- Sequence classification
 - \blacktriangleright Set of observation symbols O, set of classes C
 - Map an observation o = o₁...o_n onto the most probable string of classes c = c₁...c_n using an underlying statistical model
- Observations O: surface character alphabet

Classes
$$C = \{0, 1\}$$
 where

$$c_i = \begin{cases} 1 & \text{if } o_i \text{ is followed by a morph boundary} \\ 0 & \text{otherwise} \end{cases}$$

Example Ge.folg.s.leute.n ("henchmen_[DATIVE]")

berlin-brandenburgische AKADEMIE DER WISSENSCHAFTEN

(Klenk & Langer 1989)

Segmentation \sim Labeling: span-based classes

- Span-based annotation
- Observations O: surface character alphabet
- Classes $C = \{B, I, E, S\}$ where

 $c_i = \begin{cases} S & \text{if } o_i \text{ is preceded and followed by a morph boundary} \\ B & \text{otherwise, if } o_i \text{ is preceded by a morph boundary} \\ E & \text{otherwise, if } o_i \text{ is followed by a morph boundary} \\ I & \text{otherwise} \end{cases}$

• Example $\langle Ge \rangle \langle folg \rangle \langle s \rangle \langle leute \rangle \langle n \rangle$ ("henchmen_[DATIVE]")

(Ruokolainen et al. 2013)

Segmentation \sim Labeling: typed boundary classes

- Classification of morph boundaries
- Observations O: surface character alphabet
- Classes $C = \{+, \#, \sim, 0\}$ where

 $c_i = \begin{cases} + & \text{if } o_i \text{ is the final character of a prefix} \\ \# & \text{otherwise, if } o_i \text{ is is the final character of a free morph} \\ \sim & \text{otherwise, if } o_{i+1} \text{ is the initial character of a suffix} \\ 0 & \text{otherwise} \end{cases}$

Example Ge+folg~s#leute~n ("henchmen_[DATIVE]")

G e f o I g s I e u t e n
0 + 0 0 0 ~
$$\#$$
 0 0 0 0 ~ 0

Dsolve

- Surface analysis of German words using sequence labeling
- **Type-sensitive** classification scheme
- Conditional Random Field model predicts boundary location and type
- Features for an input string $o = o_1 \dots o_n$ use only observable context:
 - ► each position i is assigned a feature function f^k_j for each substring of o of length m = (k - j + 1) ≤ N within a context window of N - 1 characters relative to position i
 - N is the context window size or "order" of the Dsolve model (≠ CRF order)

 $f_j^k(o,i) = o_{i+j} \cdots o_{i+k} \text{ for } -N < j \le k < N$

Trained on modest set of manually annotated data

Experiments

Materials

- Manual annotation of 15,522 distinct German word-forms
 - types and locations of word-internal morph boundaries

For reference: canoo.net, Etymologisches Wörterbuch des Deutschen

Boundary type	#/Boundaries	#/Words
prefix-stem $(+)$	4,078	3,315
stem-stem $(\#)$	5,808	5,543
stem-suffix (\sim)	11,182	8,347
TOTAL	21,068	11,967

Published under the CC BY-SA 3.0 license:

http://kaskade.dwds.de/gramophone/de-dlexdb.data.txt

Experiments

Method

- Report inter-annotator agreement for a data subset
- Compare morph boundary detection of Dsolve[±types] CRF approach to
 - Morfessor FlatCat (Grönroos et al. 2014)
 - Span-based morph annotation
- Test performance w.r.t morph boundary classification [+types]
- Test model orders $1 \le N \le 5$ using 10-fold cross validation
- Report precision (pr), recall (rc), harmonic average (F), and word accuracy (acc)

Implementation

wapiti for CRF training and application

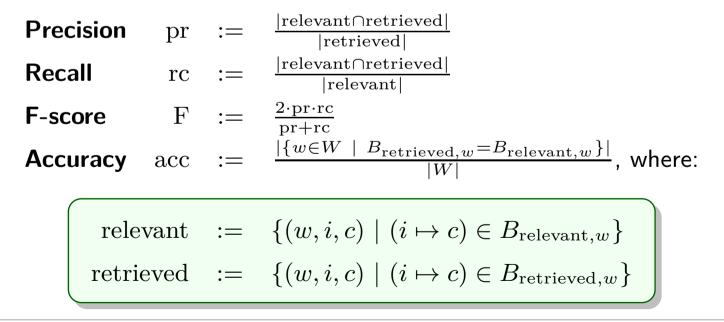
(Ruokolainen et al. 2013)

Experiments: evaluation measures

Given a finite set W of annotated words and a finite set of boundary classes C (with the non-boundary class $0 \in C$), we associate with each word $w = w_1 w_2 \dots w_m \in W$ two partial boundary-placement functions

 $B_{\text{relevant},w} : \mathbb{N} \to C \setminus \{0\} : i \mapsto c :\Leftrightarrow c \text{ occurs at position } i \text{ in } w$ $B_{\text{retrieved},w} : \mathbb{N} \to C \setminus \{0\} : i \mapsto c :\Leftrightarrow c \text{ predicted at position } i \text{ in } w$

and define



Experiments: inter-annotator agreement

- Independent 2^{nd} manual annotation of a data subset (n = 1000) by an expert
- Our own annotation serves as the "gold standard" (i.e. relevant)

Boundary Symbol	pr%	rc%	F%	acc%
+	92.05	97.20	94.56	n/a
#	96.01	93.28	94.63	n/a
\sim	93.28	92.66	92.97	n/a
TOTAL[+types]	93.74	93.74	93.74	87.40
$TOTAL[-\mathrm{types}]$	96.20	96.20	96.20	87.40

- Reasonably high agreement with discrepancies particularly w.r.t.:
 - Iatinate word formation (e.g. volunt(~)aristisch, "voluntaristic")
 - ▶ prefixion ↔ compounding (e.g. *weg+gehen vs. weg#gehen, "to leave")

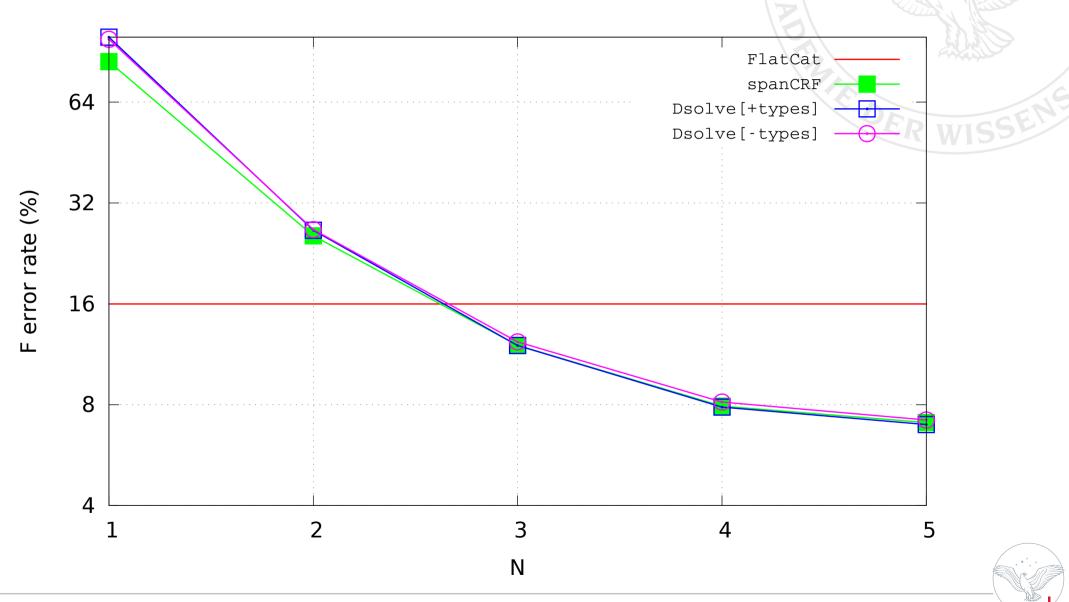
Experiments: boundary detection

Comparison of three different approaches (*retrieved*) with manual annotation as "gold standard" (i.e. *relevant*)

Method	Variant	Ν	pr%	rc%	F%	acc%
FlatCat	_	-	79.18	89.48	84.01	75.27
spanCRF	_	1	40.33	9.57	15.47	24.13
$\operatorname{spanCRF}$	_	2	77.35	71.80	74.47	55.04
$\operatorname{spanCRF}$	-	3	88.43	87.52	87.97	74.49
$\operatorname{spanCRF}$	_	4	92.83	91.33	92.08	82.57
$\operatorname{spanCRF}$	-	5	93.56	92.29	92.92	84.45
Dsolve	+types	1	36.36	0.02	0.04	22.84
Dsolve	+types	2	79.45	68.32	73.47	53.16
Dsolve	+types	3	89.36	86.64	87.98	74.35
Dsolve	+types	4	93.49	90.81	92.13	82.55
Dsolve	+types	5	94.46	91.63	93.02	84.36
Dsolve	-types	1	56.34	0.72	1.42	23.03
Dsolve	-types	2	77.53	69.61	73.36	52.94
Dsolve	-types	3	88.81	86.58	87.68	73.70
Dsolve	-types	4	92.93	90.78	91.85	81.92
Dsolve	-types	5	93.89	91.73	92.80	83.98

- CRF-based approaches outperfrom FlatCat
- Performance increases with context size ("lexicalization")
- Dsolve[+types] with higher F-score than Dsolve[-types]

Boundary detection: results



Experiments: boundary classification

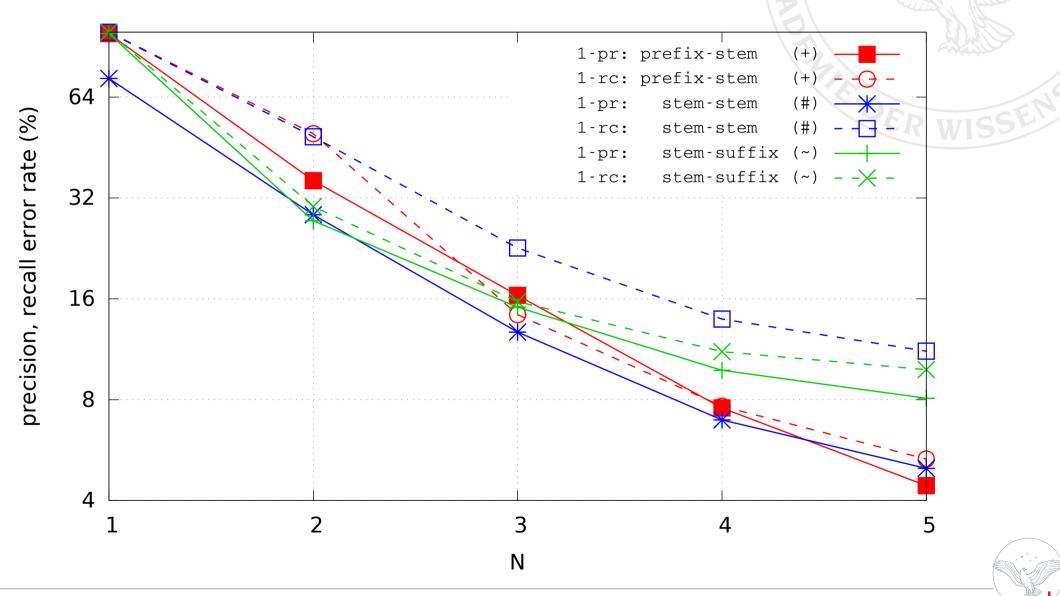
Detailed results for Dsolve boundary classification by boundary type

	Prefix-Stem (+)			Stem-Stem (#)			Stem-Suffix (\sim)		
Ν	pr%	rc%	F%	pr%	rc%	F%	pr%	rc%	F%
1	_	0.00	_	27.27	0.05	0.10	_	0.00	-
2	63.97	50.25	56.28	71.47	51.27	59.71	72.65	69.83	71.21
3	83.62	85.65	84.63	87.27	77.31	81.99	84.89	84.31	84.60
4	92.44	92.35	92.39	93.04	86.07	89.42	90.21	88.87	89.54
5	95.57	94.68	95.12	95.01	88.83	91.81	91.92	90.16	91.03

Highest F-score for detection of prefix boundaries (closed set of affixes)

- Suffix boundary detection suffers from high ambiguity of 'e'
 - ▶ e.g. *Flieg~e* ("fly") vs. *Löwe* ("lion")
- Precision-oriented compound detection (again an indication for lexicalization)

Boundary classification: results



Summary & Outlook

What We Did (instead of summer holidays)

- CRF-based, supervised approach to morphological segmentation
- Classification of morph boundaries ~>> performance increase
- Training materials freely available

What Now?

- \blacksquare Investigate influence of larger N & training corpus size
- Classification of morphs
- Morph-based classifier (vs. character-based variant presented here)
- Use as post-processor for a finite-state morphology
 - e.g. SMOR: good compound detection but many lexicalized affixes

The End

Thank you for listening!

