A New Universal Morphological Feature Schema for Rich Morphological Annotation and Cross-Lingual Projection

John Sylak-Glassman, Christo Kirov, Matt Post, Roger Que, David Yarowsky (PI)

> Center for Language and Speech Processing Johns Hopkins University Baltimore, MD

> > SFCM September 17, 2015

Current focus: Inflectional morphology

High token frequency, all languages use grammatical information it conveys, and it encodes information that is useful to NLP tasks, for example:

Nominal CaseOften correlates with semantic rolesSwitch-ReferenceOvertly marks cross-clausal NP co-referenceEvidentialityEncodes speaker's source of information

- Developed a universal morphological feature schema to capture the most basic, fine-grained distinctions made by inflectional morphology across (a large sample of) the world's languages.
- Cross-linguistic validity of features allows schema to function as an 'interlingua' for inflectional morphology, facilitating direct meaning-to-meaning translation.

Universal Morphological Feature Schema: Overview

- Contains 23 dimensions of meaning: Morphological categories (e.g. tense, number, case) which contain features that mark distinctions within a common semantic space.
- Over 212 *features*: Represent the most fine-grained distinctions in meaning within each dimension that are conveyed by inflectional morphology in any language.
- Schema allows detailed specification of meaning of inflected words, e.g. Spanish *hablarás* 'you will speak' as:

speak;V;FIN;IND;POS;DECL;ACT;FUT;2;SG;INFM

(= speak; VERB; FINITE; INDICATIVE; POSITIVE; DECLARATIVE; ACTIVE; FUTURE; 2ND PERSON; SINGULAR; INFORMAL)

- Surveyed linguistic typology literature to ensure very broad coverage of cross-linguistic diversity, especially low-resource languages.
- Dimensions of meaning
 - Identified types of cross-part-of-speech agreement, then searched for dimensions typically expressed on only a single part-of-speech.
- Features
 - Guiding principle: Features should represent irreducible, "atomic" units of meaning.
 - Allows complex features to be constructed additively, reducing total number of features.
 - ► For each dimension, found most basic distinctions made by a language.
 - Divisions of scalar property: Number (Sg, Du, Tri, Pauc, Gr. Pauc, PI)
 - Irreducible orthogonal features: Inverse number (Corbett 2000:161)

Universal Schema: Language-Independent Basis of Features

- Features are defined language-independently.
- Example: Aspect defined using Klein's (1994) system, relating time of situation (TSit = { }) to topic time (TT = []). Time of Utterance, TU = |
 - Imperfective
 $-\{-[-+++]+++\}+++|++$ IPFV

 Perfective
 $-[--\{-]-+++\}+++|++$ PFV

 Perfect
 $-\{-+++\}+++|++|+++$ PRF
 - ▶ Progressive $-\{-[-]+++\}+++|++$ PROG Prospective $-[-]-\{-+++\}+++|++$ PROSP Iterative $...[...\{-+++\}_{x_1}...\{-+++\}_{x_n}...]...|...$ ITER
 - Habitual $\dots [\dots \{-+++\}_{x_n} \dots [\dots \{-+++\}_{x_n \infty} \dots] \dots$ HAB \blacktriangleright Tense defined similarly, relating TU to TT.
- Language-independent, typologically-informed definitions of features ensure validity of cross-linguistic comparison.
- Universal Morphological Feature Schema does for morphology what Universal Dependencies (Choi et al. 2015) do for syntax, but with finer-grained features specifically for morphology.

Universal Schema: Unique Dimensions

- Schema contains dimensions that are not marked by most other general annotation frameworks.
- Evidentiality: Marks speaker's source of information (direct, hearsay, etc.).
- Switch-Reference: Marks whether an NP in one clause is coreferential with an NP in another clause.
- Information Structure: Marks information as presupposed (topic) or non-presupposed (focus).
- Deixis: Marks distinctions in distance, speaker/addressee reference, visibility, etc. in pronouns.
- Politeness: Typical informal/formal systems (Fr. tu/vous), addressee honorifics (e.g. Japanese teineigo), bystander honorifics such as Pohnpeian's five levels of honorific speech, and register (e.g. French literary tenses).

- Number: Not only singular, dual, plural, but trial, paucal, greater paucal, as well as greater plural and inverse.
- Person: 1st, 2nd, 3rd, as well as 0th (unspecified generic, 'one').
- Possession: Type of possession (alienable/inalienable) and detailed characteristics of possessor (person, number, gender, inclusive/exclusive, formal/informal).
- Case: Systematic local case features (as in Uralic and Northeast Caucasian languages) informed by global typological survey by Radkevich (2010).

Universal Schema: Full Contents

Dimension	Features					
Aktionsart	ACCMP, ACH, ACTY, ATEL, DUR, DYN, PCT, SEMEL, STAT, TEL					
Animacy	ANIM, HUM, INAN, NHUM					
Aspect	HAB, IPFV, ITER, PFV, PRF, PROG, PROSP					
Case	ABL, ABS, ACC, ALL, ANTE, APPRX, APUD, AT, AVR, BEN, CIRC, COM, COMPV, DAT, EQU, ERG, ESS, FRML, GEN, INS, IN, INTER, NOM, NOMS, ON, ONHR, ONVR, POST, PRIV, PROL, PROPR, PROX, PRP, PRT, REM, SUB, TERM, VERS, VOC					
Comparison	AB, CMPR, EQT, RL, SPRL					
Definiteness	DEF, INDEF, NSPEC, SPEC					
Deixis	ABV, BEL, DIST, EVEN, MED, NVIS, PROX, REF1, REF2, REM, VIS					
Evidentiality	ASSUM, AUD, DRCT, FH, HRSY, INFER, NFH, NVSEN, QUOT, RPRT, SEN					
Finiteness	FIN, NFIN					
Gender+	BANTU1-23, FEM, MASC, NAKH1-8, NEUT					
Info. Structure	FOC, TOP					
Interrogativity	DECL, INT					
Mood	ADM, AUNPRP, AUPRP, COND, DEB, IMP, IND, INTEN, IRR, LKLY, OBLIG, OPT, PERM, POT, PURP, REAL, SBJV, SIM					
Number	DU, GPAUC, GRPL, INVN, PAUC, PL, SG, TRI					
Parts of Speech	ADJ, ADP, ADV, ART, AUX, CLF, COMP, CONJ, DET, INTJ, N, NUM, PART, PRO, V, V.CVB, V.MSDR, V.PTCP					
Person	0, 1, 2, 3, 4, EXCL, INCL, OBV, PRX					
Polarity	NEG, POS					
Politeness	AVOID, COL, FOREG, FORM, FORM.ELEV, FORM.HUMB, HIGH, HIGH.ELEV, HIGH.SUPR, INFM, LIT, LOW,					
-	POL					
Possession	ALN, NALN, PSSD, PSSPNO+					
Switch-Reference	CN-R-MN+, DS, DSADV, LOG, OR, SEQMA, SIMMA, SS, SSADV					
Tense	1day, fut, hod, immed, prs, pst, rct, rmt					
Valency	DITR, IMPRS, INTR, TR					
Voice	ACFOC, ACT, AGFOC, ANTIP, APPL, BFOC, CAUS, CFOC, DIR, IFOC, INV, LFOC, MID, PASS, PFOC, RECP, REFL					

Yarowsky, Sylak-Glassman, Kirov (JHU) Universal Feature Schema and Cross-Lingual Projection Sep. 2, 2015 7 / 19

Example 1: Partial Turkish Noun Paradigm

Case	Definiteness	Number	Possession	Word	Gloss
NOM/ACC	INDEF	SG		ev	'(a) house'
ACC	DEF	SG		evi	'the house'
DAT	*	SG		eve	'to a house'
ESS	*	SG		evde	'in a house'
ABL	*	SG		evden	'from a house'
GEN	*	SG		evin	'of a house'
NOM/ACC	INDEF	SG	PSS1S	evim	'my house' ←
NOM/ACC	INDEF	SG	PSS2S	evin	'your house'
NOM/ACC	INDEF	SG	PSS3S	evi	'his/her/its house'
NOM/ACC	INDEF	SG	PSS1P	evimiz	'our house'
NOM/ACC	INDEF	SG	PSS2P	eviniz	'your (pl.) house'
NOM/ACC	INDEF	SG	PSS3P	evleri	'their house'

*Not all dimensions shown

Can represent as triplets of lemma, inflected word, feature vector: ev, evim, NOM/ACC;INDEF;SG;PSS1S

Example 2: Hausa 'Completive' Verb Paradigm

Aspect	Tense	Polarity	Gender	Person	Number	Word	Gloss
PRF	*	POS	*	1	SG	na tafi	'I went, I
							{have, had,
							will have}
							gone'
PRF	*	POS	MASC	2	SG	ka tafi	ʻyou (m.)
							went' (etc.)
PRF	*	POS	FEM	2	SG	kin tafi	'you (f.) went'
PRF	*	POS	MASC	3	SG	ya tafi	'he went'
PRF	*	POS	FEM	3	SG	ta tafi	'she went'
PRF	*	POS	*	1	PL	mun tafi	'we went'
PRF	*	POS	*	2	PL	kun tafi	'you all went'
PRF	*	POS	*	3	PL	sun tafi	'they went'
PRF	*	POS	*	0	PL	an tafi	'one went'

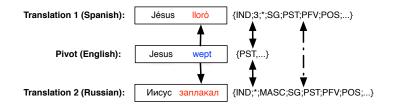
*Not all dimensions shown

 Distinguishes the 'zero person': An unspecified, generic participant ('one').


- Few-to-none tagged resources for many languages.
- Semantic information relevant to NLP tasks (switch-reference. evidentiality, formality) not overtly marked in languages of interest e.g., English.
- Project tags from high-resource or highly-specified languages to low-resource or underspecified languages.

How much noise should we expect from raw, direct cross-lingual projection of morphological features?

- How often will languages that specify the same feature dimension agree?
- Can a consensus of cross-lingual projections provide accurate morphological labels?


- From Wiktionary, extract a database of inflected forms and assign them feature vectors in our schema.
- Wiktionary is a broad-coverage cross-linguistic resource for morphological paradigm data. It is intended to be human-readable, rather than machine-readable, and lacks standardized layouts.

Procedure - Wiktionary Extraction and Mapping

Extracted feature vectors for inflected forms of 883,965 lemmas across 352+ languages in the English edition of Wiktionary. More details in Sylak-Glassman et al. (2015 ACL).

- Use all N and V words in the NT of the NIV English bible as pivots.
- Using standard MT tools (Berkeley Aligner), align the English NT to over 800 bibles.
- In Wiktionary, find a feature vector for each foreign word aligned to a pivot. This left 1,683,086 translations covering 47 unique languages across 18 language families.

 Average pairwise agreement under different genealogical language similarity conditions.

Dimension	Overall	Different Family	Same Family	Same Language
Mood	0.89	0.82	0.95	0.99
Case	0.45	0.23	0.77	0.91
Gender	0.75	0.39	0.87	0.96
Number	0.79	0.74	0.88	0.96
Part of Speech	0.74	0.73	0.85	0.94
Person	0.87	0.82	0.93	0.97
Politeness	0.98	0.84	0.99	1.00
Tense	0.73	0.66	0.82	0.95
Voice	0.95	0.83	0.99	0.99
AVERAGE	0.79	0.67	0.89	0.96

Evaluating Label Accuracy of Direct Projection

- Evaluate on Wiktionary data in Albanian and Latin.
- Also hold out one aligned language and compare to consensus feature on rest.

Dimension	Held-Out	Albanian	Latin
Case	0.50	0.57	0.81
Gender	0.76	0.74	0.44
Mood	0.91	N/A	0.96
Number	0.83	0.83	0.85
Part of Speech	0.83	0.86	0.59
Tense	0.79	0.84	0.65
Voice	0.95	N/A	0.84
AVERAGE	0.80	0.77	0.73

- The above is a measure of the noise associated with raw direct projection.
- It serves as a baseline for feature accuracy before string and context models.

- Developed typologically-informed, language-independent, very fine-grained morphological feature schema for inflectional morphology.
- Results of projection experiments and systematization of Wiktionary data show that the morphological feature schema already achieves good cross-linguistic coverage and functions well as an interlingua for inflectional morphology.

Thank You!

John Sylak-Glassman jcsg@jhu.edu Christo Kirov ckirov@gmail.com Matt Post post@cs.jhu.edu Roger Que rque1@jhu.edu David Yarowsky yarowsky@jhu.edu

CHOI, JINHO; MARIE-CATHERINE DE MARNEFFE; TIM DOZAT; FILIP GINTER; YOAV GOLDBERG; JAN HAJIČ; CHRISTOPHER MANNING; RYAN MCDONALD; JOAKIM NIVRE; SLAV PETROV; SAMPO PYYSALO; NATALIA SILVEIRA; REUT TSARFATY; and DAN ZEMAN. 2015. Universal Dependencies. Accessible at: http://universaldependencies.github.io/docs/.

CORBETT, GREVILLE G. 2000. Number. Cambridge, UK: Cambridge University Press.

KLEIN, WOLFGANG. 1994. Time in Language. New York: Routledge.

RADKEVICH, NINA V. 2010. On Location: The Structure of Case and Adpositions. Ph.D. thesis, University of Connecticut, Storrs, CT.

SYLAK-GLASSMAN, JOHN; CHRISTO KIROV; DAVID YAROWSKY; and ROGER QUE. 2015. A language-independent feature schema for inflectional morphology. Proceedings of the ACL-IJCNLP, Beijing: Association for Computational Linguistics.

SYLAK-GLASSMAN, JOHN; CHRISTO KIROV; MATT POST; ROGER QUE; and DAVID YAROWSKY. To appear. A universal feature schema for rich morphological annotation and fine-grained cross-lingual part-of-speech tagging. Proceedings of the 4th Workshop on Systems and Frameworks for Computational Morphology, edited by Michael Piotrowski and Cerstin Mahlow, Berlin: Springer.

Yarowsky, Sylak-Glassman, Kirov (JHU) Universal Feature Schema and Cross-Lingual Projection Sep. 2, 2015 19 / 19