Designing and comparing G2P-type lemmatizers for a morphology-rich language

Steffen Eger, Goethe University Frankfurt am Main, Text Technology Lab steeger@em.uni-frankfurt.de

> ◆□▶ ◆圖▶ ◆ 圖▶ ◆ 圖▶ ▲ 圖 · 의 Q (~ 1/34

Goals

- Compare performances of different lemmatization systems for Latin
 - For practical purposes: want to offer Latin preprocessing to the community
- Evaluate how character-level (G2P inspired) string transduction systems perform

Table of contents

Lemmatization

Compared systems

 ${\sf L}_{\rm Lemmatization}$

Table of contents

1 Lemmatization

2 Compared systems

Lemmatization

Task of converting an **inflected form** to its **base form**

- $\blacksquare \ playing \mapsto play$
- $\blacksquare gespielt \mapsto spielen$
- $\blacksquare amaveritis \mapsto amo$
- Can be done with the help of, e.g., lexicons, but designing lexicons is costly (and boring)
- View the problem as a (machine learning) string transduction problem where we want to learn character level transformations for translating

 $\mathbf{x} \mapsto \mathbf{y}$

Broader Context: Preprocessing tools for Latin

- Want to develop NLP tools for Latin as part of the Comphistsem project www.comphistsem.org
 - Lexicon (Collex.LA Mehler et al. 2015): > 8 million word forms
 - Lemmatizers
 - Taggers (Eger, vor der Brück, Mehler, 2015)
 - Dependency parsers
 - See also: https://prepro.hucompute.org/

Lemmatization

- Traditionally, lemmatization in machine learning is viewed as a problem of *suffix* (and *prefix*) transformation
 - Jursic et al. (2010), Gesmundo and Samardzic (2012)
- In contrast, we compare general purpose string transduction systems with such systems:
 - General purpose string transduction systems, particularly for G2P, have been well-explored

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

7/34

- Prefix and suffix transformations may not always be sufficient/appropriate; e.g. u/v alternation in Latin or irregular forms
 - $\blacksquare cf. schafft \mapsto schaffen,$
 - \blacksquare cf. schläft \mapsto schlafen

Lemmatization (and related fields such as *inflection generation*) has attracted attention recently

- Durrett and DeNero (2013); Ahlberg, Forsberg, Hulden (2014)
 - paradigm induction from inflection tables
 - inflect an input base-form by matching it to a paradigm seen during training
- Nicolai, Cherry, Kondrak (2015):
 - View inflection generation as a character-level string transduction task (like this work)

Ahlberg, Forsberg, Hulden (2014):

Paradigm for schreiben, leihen, etc.

$x_1 + \mathbf{e} + x_2 + x_3 + \mathbf{en}$	INFINITIVE
$x_1 + \mathbf{e} + x_2 + x_3 + \mathbf{end}$	PRESENT PARTICIPLE
$ge + x_1 + x_2 + e + x_3 + en$	PAST PARTICIPLE
$x_1 + \mathbf{e} + x_2 + x_3 + \mathbf{e}$	PRESENT 1P SG
$x_1 + \mathbf{e} + x_2 + x_3 + \mathbf{st}$	PRESENT 2P SG
$x_1 + \mathbf{e} + x_2 + x_3 + \mathbf{t}$	PRESENT 3P SG

• At test time, match an input form to a paradigm, then generate arbitrary other forms from paradigm

L_{Compared systems}

Table of contents

1 Lemmatization

2 Compared systems

Systems

- Mate (Bohnet, 2010): learns shortest edit scripts
- **LemmaGen** (Jursic et al., 2010): learns to transform word form suffixes via 'if-then' rules
- LemmAsTagging (Gesmundo and Samardzic, 2012): codes (densely) lemmatization as prefix and suffix transformations; can then lemmatize in context
- Phonetisaurus (Novak et al., 2012): Joint G2P *n*-gram model
- AliSeTra: Own discriminative model (in spirit similar to Jiampojamarn et al., 2010)

Systems

- Mate (Bohnet, 2010): learns shortest edit scripts
- **LemmaGen** (Jursic et al., 2010): learns to transform word form suffixes via 'if-then' rules
- LemmAsTagging (Gesmundo and Samardzic, 2012): codes (densely) lemmatization as prefix and suffix transformations; can then lemmatize in context
- Phonetisaurus (Novak et al., 2012): Joint G2P *n*-gram model
- AliSeTra: Own discriminative model (in spirit similar to Jiampojamarn et al., 2010)

Training data

All systems take pairs of strings (word form,lemma) as input

ingem uistis	$\operatorname{ingem}\mathbf{isco}$
$\mathrm{exmact} \mathbf{auisset} \mathbf{is}$	$\mathrm{exmact}\mathbf{o}$
$\operatorname{conrectvs}$	$\operatorname{conr}\mathbf{igeo}$
emund atarum	$\mathrm{emund}\mathbf{o}$
$\operatorname{superinte} \mathbf{xere}$	$\operatorname{superinte} \mathbf{go}$
dispute bant	disputeo
4	*
prine ipibv s	$prine \mathbf{p}s$
-	prine p s frag um
prine ipibv s	· ·
prine ipibv s frag i	fragum
prine ipibv s frag i chyrogrilli o	frag um chyrogrilli us

LemmAsTagging (Gesmundo and Samardzic, 2012)

• Code suffix and prefix transformations as 4-tuples

 $gespielt \mapsto spielen \Longrightarrow (2, \emptyset, 1, en)$

- Allows to view lemmatization as a classification/tagging problem
 - Can lemmatize in context

Compared systems

Phonetisaurus (Novak et al., 2012)

- (1) Align training data $\begin{array}{ccccccc} d & i & s & s & o & n & verat \\ d & i & s & s & o & n & o \end{array}$
- (2) Train N-gram model on aligned data
- (3) At decoding time, apply learned N-gram model

- (2) Train discriminative model on aligned data (CRF, structured SVM)
- (3) At decoding time, first *segment* input string, then apply the CRF

- (1) Align training data $\begin{array}{ccccccc} d & i & s & s & o & n & verat \\ d & i & s & s & o & n & o \end{array}$
- (2) Train discriminative model on aligned data (CRF, structured SVM)
- (3) At decoding time, first *segment* input string, then apply the CRF:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

17/34

• Test input: *computaris*

- (1) Align training data $\begin{array}{ccccccc} d & i & s & s & o & n & verat \\ d & i & s & s & o & n & o \end{array}$
- (2) Train discriminative model on aligned data (CRF, structured SVM)
- (3) At decoding time, first *segment* input string, then apply the CRF:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

18/34

■ Test input: *c-o-m-p-u-t-aris*

- (1) Align training data $\begin{array}{ccccccc} d & i & s & s & o & n & verat \\ d & i & s & s & o & n & o \end{array}$
- (2) Train discriminative model on aligned data (CRF, structured SVM)
- (3) At decoding time, first *segment* input string, then apply the CRF:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

19/34

• Test input: c-o-m-p-u-t-o

- (1) Align training data $\begin{array}{cccccc} d & i & s & s & o & n & verat \\ d & i & s & s & o & n & o \end{array}$
- (2) Train discriminative model on aligned data (CRF, structured SVM). Features: Context features, linear chain features, I use CRF++ (highly not recommended)
 Additional features: Intra-subsequence-character features (AliSeTra++)

Running times

On training set of size 100,000

Mate	minutes to hours
LemmaGen	seconds
LAT	depends (days)
Phonetisaurus	minutes
AliSeTra	depends (days)

◆□ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → </p>
21 / 34

Table of contents

1 Lemmatization

2 Compared systems

G2P results

	2,000	$5,\!000$	10,000
AliSeTra++	38.33	51.98	61.26
AliSeTra	36.64	52.43	62.13
Phonetisaurus	44.60	57.62	66.67
LemmaGen	2.29	4.42	6.82
-last-4-chars	15.30	22.33	36.82
Mate	0.39	0.76	1.00
-on-training	89.17	97.49	95.26

Table: Word accuracy in % as a function of training set size. G2P data.

Results

Results on word lists

- Extract pairs (form,lemma) from our lexicon and train and test on them
- For different word classes (verbs, adjectives, nouns)
- Indicates the degree to which systems can learn regular morphological phenomena

Verbs

	Avg-InDomain	Avg-OutDomain
AliSeTra	87.89	81.78
AliSeTra++	88.42	83.09
Phonetisaurus	86.98	73.78
LemmaGen	78.23	76.91
Mate	66.10	64.36

Table: Word accuracy in % for different systems, **verbs**. Each system is trained on 10 random subsets of the training data of size 40,000 each. Average and simple majority vote results indicated. In bold: Statistically indistinguishable best performances.

Nouns

	Avg-InDomain	Avg-OutDomain
AliSeTra	78.25	74.11
AliSeTra++	77.76	74.31
Phonetisaurus	76.74	72.98
LemmaGen	75.37	72.74
Mate	72.90	70.26

Table: Word accuracy in % for different systems, **nouns**. Each system is trained on 10 random subsets of the training data of size 40,000 each. Average and simple majority vote results indicated. In bold: Statistically indistinguishable best performances.

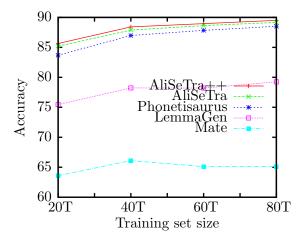


Figure: Word accuracy as a function of training set size. In-domain testing. Verbs

Errors

- \blacksquare Deponent verbs (-or vs. -o)
- Mix up of conjugation/declination classes
- Gender (-us vs. -um)
- Lexicon might act as a filtering device

Results

Application: How learned lemmatizers can assist lexicon-based systems

	Token accuracy
TreeTagger	86.23%
TreeTagger+AliSeTra++	88.56%
TreeTagger+LemmaGen	89.37%

Table: TreeTagger lemma token accuracy on a subpart of the PL and accuracy values when the lemmatizer is complemented by our trained lemmatizers.

Evaluation on Text

 Evaluate on real text — different distribution of words (many irregular forms, repetition)

		Accuracy
	Mate	93.62
_	LemmaGen	95.47
	AliSeTra	95.15
	Phonetisaurus	95.40
	LaT	95.49

Conclusion

- Systems have different performances depending on evaluation scenario
- If lemmatization in text is the goal, systems perform roughly equally well

31/34

• Choosing a fast system may be the best choice

Conclusion

- Must look at *joint* lemmatization and tagging
 - But see: (to appear) 2015. Thomas Müller, Ryan Cotterell, Alex Fraser and Hinrich Schütze. Joint Lemmatization and Morphological Tagging with Lemming. EMNLP
- How can we combine predictions of the different systems (at substring level)?
 - Eger, Steffen. Multiple Many-To-Many Sequence Alignment For Combining String-Valued Variables: A G2P Experiment. In: ACL, 2015

Results

Literature

- Eger, vor der Brück, Mehler. Lexicon-assisted tagging and lemmatization in Latin: A comparison of six taggers and two lemmatization methods. LaTeCH 2015, Beijing, China, 2015.
- Mehler, vor der Brück, Gleim, Geelhaar. Towards a network model of the coreness of texts: An experiment in classifying Latin texts using the TTLab Latin tagger. 2015.
- Ahlberg, Forsberg, Hulden. Semi-supervised learning of morphological paradigms and lexicons. EACL, 2014.
- Durret and DeNero. Supervised learning of complete morphological paradigms. NAACL-HLT, 2013.
- Nicolai, Cherry, Kondrak. Inflection generation as a generative string transduction task. NAACL, 2015.

Thank you!

<□> < @> < ≥> < ≥> ≥ 少へ⊙ 34/34